

IPv6

Past, Present, and Future

Bob Hinden Check Point Fellow

©2012 Check Point Software Technologies Ltd. [PROTECTED] - All rights reserved.

Outline

2 Where we are now

- In the early 1990s it was not clear that TCP/IP was going to be successful
- There were many competitors
 OSI CLNP, ATM, AT&T Business, etc.
- Predictions of Internet melt downs
- The IETF was not considered an official standards organization
- Not having a plan for what follows IPv4 was a real issue

FACTORS CAUSING GROWTH

- More of what we have Today
 - All Computers on Internet
 - Real Commerce / Advertising
- New Users
 - Large Countries (China, India, ...)
 - New Industries (cable, mobile, ...)
- Networked Everything
 - All Information Devices (FAX, Printers, ...)
 - Energy Management (meters, controllers, switches....)

7

IETF IPng Time Line

- ► ~1990
 - Internet growing exponentially and started looking like running out of IP addresses
 - Projected exhaustion of Class B Address space
- **1991**
 - Routing and Addressing (ROAD) group formed
 - Recommended implementing CIDR and develop IPng
- **1**992
 - IAB issues "IP Version 7"
 - This came to be known as the "Kobe Incident"
 - Result was current IESG and IAB model
 - IETF issues call for IPng proposals

1993

- IESG took on IPng responsibility
- IPng Area formed
 - Scott Bradner & Allison Mankin area directors
- RFC1550 Call for IPng Solicitation published

1994

IPng Recommendation

IPng Candidates

Version	Name
0-3	Unassigned
4	Internet Protocol (current IPv4)
5	Stream Protocol (ST) (not an IPng)
6	SIP – SIPP – IPv6
7	IPv7 – TP/IX – CATNIP
8	Pip
9	TUBA
10-15	unassigned

- Fixed length 64-bit addresses
 - Met requirements by 3 orders of magnitude, 10¹² sites, 10¹⁵ nodes at .0001 allocation
 - Minimizes growth of packet
 - Efficient for software processing
- Variable length addresses, up to 160-bits
 - Compatible with OSI NSAP address plans
 - Large enough for auto-configuration using IEEE 802 addresses
 - Could start with short addresses and grow later
- Compromised on fixed length 128-bit addresses

IPng based on SIPP with 128-bit addresses

- IPng working group created to create specifications and standardize IPv6
 - Chairs: Steve Deering, Ross Callon
 - Document editor: Bob Hinden
- Goal to resolve remaind issues, complete unfinished work, move to Proposed Standard
 - IPv6 first published as RFC1883 December 1995

Outline

2 Where we are now

We did run out of IPv4 Addresses

(Last allocation to RIRs from the IANA free pool 31 Jan 2011)

THE FUTURE IS FOREVER 6 JUNE 2012

Major Internet service providers (ISPs), home networking equipment manufacturers, and web companies around the world are coming together to permanently enable IPv6 for their products and services by 6 June 2012.

Organized by the Internet Society

http://www.worldipv6launch.org/

Slovenia highest % of IPv6 sites in Alexa Top 50 by Country

http://www.vyncke.org/ipv6status/gmap.php?metric=W®ion=150

IPv6 Traffic at Amsterdam IX

https://www.ams-ix.net/technical/statistics/sflow-stats/ipv6-traffic

http://www.de-cix.net/about/statistics/

Users accessing Google with IPv6

(http://www.google.com/ipv6/statistics.html)

software**blades****

% of ASes announcing an IPV6 prefix

Source: RIPE

http://www.ipv6.org.nz/metrics/metric-1/

CAIDA AS Interconnection comparison

http://blog.caida.org/best_available_data/wp-content/uploads/2011/06/ascore-ipv4-ipv6.simple.2010.09.png

(Short Demo)

Great progress in past few years

Many major deployment hurdles overcome

Question changed from:

"Why deploy IPv6" to "How do I deploy IPv6"

Outline

Next Tier of Web content	 Governments News sites Banking Commerce
Access Networks	 WIFI in hotels, coffee shops, airports, LTE / 3G worldwide DSL/Cable worldwide
Enterprise Networks	 What is the business case? Is communicating with customers enough? Is this a Y2K like issue?

As access providers enable IPv6 we will see IPv6 traffic increase quickly

The transition to IPv6 is only a step in the Internet's evolution

The goal is a world where everyone and everything is connected on the Internet

IPv6 allows us to move toward the Goal

Thank You!

©2012 Check Point Software Technologies Ltd. [PROTECTED] - All rights reserved.